A note on the modulus of continuity of a periodic function

M. Allamea,\ast, B. Vatankhahanb

a Department of Mathematics, Islamic Azad University, Khorasgan branch, Isfahan, Iran
b Department of Mathematics, Islamic Azad University, Mobarekeh branch, Isfahan, Iran

\textbf{A R T I C L E I N F O}

Article history:
Received 3 June 2009
Received in revised form 11 October 2010
Accepted 14 October 2010

Keywords:
Modulus of a function
Periodic function
Approximation function

\textbf{A B S T R A C T}

Let \(f(x) \) be a periodic function with period \(T \). In Rivlin (1969) \cite{1} it is claimed that the modulus of continuity is independent of \(a \) on \([a, a + T]\). In this note we show that this is not correct.

© 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.aml.2010.10.017

1. Introduction

\textbf{Definition 1.1} \cite{1}. Let \(f(x) \) be defined on \([a, b]\); the modulus of a function on \([a, b]\), \(w(\delta) \), is defined for \(\delta > 0 \) by

\[
w(\delta) = \sup_{x_1, x_2 \in [a, b]} |f(x_1) - f(x_2)|.
\]

\(w(\delta) \) is shorthand for \(w(f; [a, b]; \delta) \).

It is said to have certain properties (see \cite{1}); for example:

1. If \(0 < \delta_1 \leq \delta_2 \), then \(w(\delta_1) \leq w(\delta_2) \).
2. \(f(x) \) is uniformly continuous on \([a, b]\) if and only if

\[
\lim_{\delta \to 0} w(\delta) = 0.
\]

3. If \(\lambda > 0 \), then

\[
w(\lambda \delta) \leq (1 + \lambda)w(\delta).
\]

Also:

4. If \(f(x) \) has period \(T \), \(w(f; [a, a + T]; \delta) \) is independent of \(a \).

Now, using a counterexample we show that the last property is not correct.

\textbf{Example 1.} Let

\[
f(x) = \begin{cases}
-x + 1 & 0 \leq x < 0.9 \\
x - 8 & 0.9 \leq x \leq 1
\end{cases}
\]

and \(f(x + 1) = f(x) \). It is clear that \(f \) is periodic with period 1.
Let $\delta = 0.1$; then

$$w(f; [0, 1]; 0.1) = 0.9$$

and

$$w(f; [0.95; 1.95]; 0.1) = 0.45.$$

References